\begin{tabbing} fifo+switch(${\it es}$;$C$;$j$,$i$,$e$.$S_{1}$\=($j$\+ \\[0ex];$i$ \\[0ex];$e$);$j$,$i$,$e$.$S_{2}$\=($j$\+ \\[0ex];$i$ \\[0ex];$e$);$i$,$e$.${\it Req}_{1}$\=($i$\+ \\[0ex];$e$);$j$,$i$,$e$.${\it Ack}_{1}$\=($j$\+ \\[0ex];$i$ \\[0ex];$e$);$i$,$e$.${\it Req}_{2}$\=($i$\+ \\[0ex];$e$);$j$,$i$,$e$.${\it Ack}_{2}$\=($j$\+ \\[0ex];$i$ \\[0ex];$e$)) \-\-\-\-\-\-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=(\=$\forall$$i$:$C$, $j$:$C$.\+\+ \\[0ex]$\forall$$x$:es{-}E(${\it es}$), $y$:es{-}E(${\it es}$). \\[0ex]$S_{2}$($j$;$i$;$x$) \\[0ex]$\Rightarrow$ $S_{1}$($j$;$i$;$y$) \\[0ex]$\Rightarrow$ \=((\=es{-}causle(${\it es}$;$x$;$y$)\+\+ \\[0ex]$\Rightarrow$ ($\exists$\=${\it req}$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{2}$($j$;$i$;$e$)\} \+ \\[0ex]$\exists$\=${\it ack}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{2}$($j$;$i$;$e$)\} \+ \\[0ex](${\it Req}_{2}$($j$;${\it req}$) \\[0ex]\& es{-}causle(${\it es}$;$x$;${\it req}$) \\[0ex]\& es{-}causle(${\it es}$;${\it req}$;${\it ack}$) \\[0ex]\& es{-}causle(${\it es}$;${\it ack}$;$y$)))) \-\-\-\\[0ex]\& (\=es{-}causle(${\it es}$;$y$;$x$)\+ \\[0ex]$\Rightarrow$ ($\exists$\=${\it req}$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{1}$($j$;$i$;$e$)\} \+ \\[0ex]$\exists$\=${\it ack}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{1}$($j$;$i$;$e$)\} \+ \\[0ex](${\it Req}_{1}$($j$;${\it req}$) \\[0ex]\& es{-}causle(${\it es}$;$y$;${\it req}$) \\[0ex]\& es{-}causle(${\it es}$;${\it req}$;${\it ack}$) \\[0ex]\& es{-}causle(${\it es}$;${\it ack}$;$x$)))))) \-\-\-\-\-\\[0ex]\& (\=$\forall$$i$:$C$, $j$:$C$.\+ \\[0ex](\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{1}$($j$;$i$;$e$)\} , ${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{1}$($j$;$i$;$e$)\} .\+ \\[0ex]($\neg$es{-}causle(${\it es}$;${\it e'}$;$e$)) $\Rightarrow$ es{-}causl(${\it es}$; $e$; ${\it e'}$)) \-\\[0ex]\& (\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{2}$($j$;$i$;$e$)\} , ${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{2}$($j$;$i$;$e$)\} .\+ \\[0ex]($\neg$es{-}causle(${\it es}$;${\it e'}$;$e$)) $\Rightarrow$ es{-}causl(${\it es}$; $e$; ${\it e'}$))) \-\-\\[0ex]\& (\=$\forall$$i$:$C$, $j$:$C$.\+ \\[0ex](\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{1}$($j$;$i$;$e$) \& ${\it Req}_{1}$($j$;$e$)\} , ${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{1}$($j$;$i$;$e$) \& ${\it Req}_{1}$($j$;$e$)\} .\+ \\[0ex]($\neg$es{-}causle(${\it es}$;${\it e'}$;$e$)) $\Rightarrow$ es{-}causl(${\it es}$; $e$; ${\it e'}$)) \-\\[0ex]\& (\=$\forall$\=$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{2}$($j$;$i$;$e$) \& ${\it Req}_{2}$($j$;$e$)\} ,\+\+ \\[0ex]${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{2}$($j$;$i$;$e$) \& ${\it Req}_{2}$($j$;$e$)\} . \-\\[0ex]($\neg$es{-}causle(${\it es}$;${\it e'}$;$e$)) $\Rightarrow$ es{-}causl(${\it es}$; $e$; ${\it e'}$))) \-\-\\[0ex]\& (\=$\forall$$i$:$C$, $j$:$C$.\+ \\[0ex](\=$\forall$$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{1}$($j$;$i$;$e$) \& ${\it Req}_{1}$($j$;$e$)\} , ${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{1}$($j$;$i$;$e$) \& ${\it Req}_{1}$($j$;$e$)\} .\+ \\[0ex]es{-}causl(${\it es}$; $e$; ${\it e'}$) \\[0ex]$\Rightarrow$ ($\exists$$a$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{1}$($j$;$i$;$e$)\} . (es{-}causl(${\it es}$; $e$; $a$) \& es{-}causl(${\it es}$; $a$; ${\it e'}$)))) \-\\[0ex]\& (\=$\forall$\=$e$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{2}$($j$;$i$;$e$) \& ${\it Req}_{2}$($j$;$e$)\} ,\+\+ \\[0ex]${\it e'}$:\{$e$:es{-}E(${\it es}$)$\mid$ $S_{2}$($j$;$i$;$e$) \& ${\it Req}_{2}$($j$;$e$)\} . \-\\[0ex]es{-}causl(${\it es}$; $e$; ${\it e'}$) \\[0ex]$\Rightarrow$ ($\exists$\=$a$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it Ack}_{2}$($j$;$i$;$e$)\} \+ \\[0ex](es{-}causl(${\it es}$; $e$; $a$) \& es{-}causl(${\it es}$; $a$; ${\it e'}$))))) \-\-\-\- \end{tabbing}